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The dynamic response of a homogeneous isotropic micropolar half-space with voids
subjected to a set of normal point sources is investigated. The integral transforms have been
inverted by using a numerical technique to obtain the normal force stress, normal
displacement, tangential force stress, tangential couple stress and volume fraction "eld in the
physical domain for the two di!erent sources. The results of these quantities for
a magnesium crystal-like material are given and illustrated.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Theory of linear elastic materials with voids is one of the generalizations of the classical
theory of elasticity. This theory has practical utility of investigating various types of
geological, biological and synthetic porous materials for which the elastic theory is
inadequate. This theory is concerned with elastic materials consisting of a distribution of
small pores (voids), in which the void volume is included among the kinematic variables,
and in the limiting case of volume tending to zero, the theory reduces to the classical theory
of elasticity.
A non-linear theory of elastic materials with voids was developed by Nunziato and

Cowin [1]. Later, Cowin and Nunziato [2] developed a theory of linear elastic materials
with voids for the mathematical study of the mechanical behavior of porous solids. They
considered several applications of the linear theory by investigating the response of the
materials to homogeneous deformations, pure bending of a beam and small amplitudes
acoustic waves. The problems of quasi-static plane strain and plane stress for a linear elastic
material with void was studied by Cowin [3]. Puri and Cowin [4] studied the behavior of
plane harmonic waves in a linear elastic material with voids. Iesan [5] developed the basic
theories of linear thermoelastic materials with voids, Chandrasekharaiah and Cowin [6],
obtained the "eld equations governing two di!erent continuum theories, namely the theory
of thermoelasticity and Biot's theory of poroelasticity. The problem of complete solutions in
the theory of isotropic elastic materials with voids was discussed by Chandrasekharaiah
[7]. A domain of in#uence theorem in the linear theory of elastic materials with voids was
discussed by Dhaliwal and Wang [8].
The particles of a classical elastic materials have only a translational degree of freedom,

and transmission of the load across a di!erential element of the surface is described by
a force vector only. The polycrystalline materials do not con"rm this property. These
materials are "brous and composite in nature and exhibit size e!ects. These materials have
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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additional microdeformational degrees of freedom, i.e., they possess a microstructure whose
size cannot be neglected in comparison with length scales of interest. Various degrees of
freedom of a microstructure were considered by di!erent authors. Notable among them are
Cosserat [9], Eringen and Suhubi [10] and Mindlin [11]. Each one has given an
independent set of governing equations. The force at a point of a surface element of bodies
of these materials is completely characterized by a stress vector and a couple stress vector at
that point. In the classical theory of elasticity, the e!ect of couple stress is neglected, Eringen
[12] has modi"ed his earlier theory and renamed it as the &&Linear Theory of Micropolar
Elasticity''.
Iesan [13] studied shock waves in micropolar elastic material with voids. Recently,

Scarpetta [14] worked on the fundamental solutions in micropolar elasticity with voids.
Marin [15}17] discussed di!erent problems in micropolar elasticity with voids.

2. FORMULATION OF THE PROBLEM

We consider a homogeneous, isotropic, micropolar elastic half-space with voids. The
rectangular Cartesian co-ordinate system (x, y, z) having origin on the surface z"0 with the
z-axis vertical down into the medium is introduced. A normal delta distribution or
continuous point source is assumed to be acting at the origin of the rectangular Cartesian
co-ordinates.
Following references [13, 18], the constitutive relations and "eld equations in micropolar

elastic solid with voids without body force and body couple can be written as

t
��
"� u

���
�
��
#� (u

���
#u

���
)#K (u

���
!�

���
�
�
)#�

��
�*q, (1)

m
��
"� �

���
�
��
#��

���
#��

���
(2)

and

(�#�)� (� ) u)#(�#K)��u#K���#�*�q"	

�u


t�
, (3)

(�#�#�)� (� ) �)!� �� (���)#K��u!2K�"	 j

��

t�
. (4)

�*��q!�* q!�*

q

t

!�*� ) u"	K*

�q


t�
, (5)

where �, �, K, �, �, � are the material constants, 	 the density, j the microinertia, u the
displacement vector, � the microrotation vector, t

��
the component of force stress and m

��
the component of couple stress, q the volume fraction "eld and �*, �*, �*, �*, K* are the
material constants due to the presence of voids.
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Equations (3)}(5) may be recast into the dimensionless form after suppressing the dashes as
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Using the expression relating displacement components u
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in equations (7)}(10), we obtain
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Applying the Laplace and Fourier transforms
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, and qJ tend to zero as z tends to in"nity, the solution of equations (18) and

(19) may be written as

��
�
"A

�
e!�

�
z
#A

�
e!�

�
z, (21)

q� "R
�
A

�
e!�

�
z
#R

�
A

�
e!�

�
z, (22)

��
�
"A

�
e!�

�
z
#A

�
e!�

�
z, (23)

��
�
"R

�
A

�
e!�

�
z
#R

�
A

�
e!�

�
z, (24)

where ��
���
and ��

���
are the roots of di!erential equations (18) and (19), respectively,

given by

��
�
"�

!A#(!1)��� �A�!4B

2 �, i"1, 2,

��
�
"�

!E#(!1)��� �E�!4F

2 �, i"3, 4 (25)



DISTURBANCE DUE TO MECHANICAL SOURCES 5
and

R
�
"[(1#a

�
) (��!��

�
)#a

�
p�]/a

�
, i"1, 2,

R
�
"[a

�
(��!��

�
)#a

�
p�]/a

�
, i"3, 4. (26)

3. APPLICATION

3.1. CASE I DELTA DISTRIBUTION NORMAL POINT SOURCE

The plane boundary is subjected to a delta distribution normal point force. Therefore, the
boundary conditions are
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where P is the magnitude of the force applied and �( ) is Dirac's delta distribution.
Making use of equations (1), (2), (11) and (12) in the boundary conditions (27) and

applying the transforms de"ned by (17) and substituting the values of ��
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equations (21)}(24) in the resulting expressions, we obtain the expressions for the
displacement components, stresses and volume fraction "eld.
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Particular case: If we neglect the in#uence of the voids, i.e., (�*"�*"�*"�*"
K*"0) in equations (28)}(33), the expressions for the displacement components and force
stresses are obtained in a micropolar elastic medium as
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3.2. CASE II CONTINUOUS NORMAL POINT SOURCE

When the plane boundary is subjected to a continuous point source, the boundary
conditions are
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where P is the magnitude of the continuous force applied and H( ) the Heaviside
distribution.
With the help of these boundary conditions (41), the expressions for the displacement

components, force stresses, couple stress and volume fraction are obtained by equations
(28)}(33) replacing �

�
with �
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(i"1,2 , 4), where
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Particular case: If we neglect e!ect of voids, the analytical expressions for the
displacement components, force stress in a micropolar elastic medium are given by
equations (35)}(39) with �*

�
(i"1, 2, 3) replaced by �*
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(i"1, 2, 3), respectively, where
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4. INVERSION OF TRANSFORM

We get expressions for displacement, microrotation, stress solution in equations (28)}(33)
and (35)}(39). These expressions are functions of z, the parameters of Laplace and Fourier
transforms p and �, respectively, and hence of the form fI (�, z, p). To get the function f (x,
z, t) in the physical domain, "rst we invert the Fourier transform using
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where fI
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are, respectively, even and odd parts of the function fI (�, z, p). Thus,

expression (44) gives us the Laplace transform fM (x, z, p) of function f (x, z, t).
Then, for the "xed values of �, x and z, the function fM (x, z, p) in expression (44) can be

considered as the Laplace transform gJ (p) of g(t). Following Honig and Hirdes [11], the
Laplace transformed function gN (p) can be inverted as follows: The function g(t) can be
obtained by using
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where C is an arbitrary real number greater than all the real part of singularities of gN (p).
Taking p"C#iy, we get
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Now, taking e!Ct g (t) as h (t) and expanding it as Fourier series in [0, 2¸], we obtain
approximately the formula
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Since the in"nite series in equation (48) can be summed up only to a "nite number of

terms N, the approximate value of g (t) becomes
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Now we introduce a truncation error E
�
, that must be added to the discretization error to

produce the total approximate error in evaluating g (t) using the above formula.
The discretization error is reduced by using the &&Korrecktur method'' and then the &&�-
algorithm'' is used to reduced the truncation error and hence to accelerate the convergence.
The Korrecktur method formula to evaluate the function g (t) is
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where N
 is an integer such that N
(N.
We shall now describe the �-algorithm, which is used to accelerate the convergence of the

series in equation (49). Let N be an odd natural number and S
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The sequence �
���
, �

���
,2 , �

���
converges to g(t)#E



!C

	
/2 faster than the sequence of

partial sums S
�
, m"1, 2, 3,2 . The actual procedure to invert the Laplace transform

consists of equation (50) together with the �-algorithm. The values of C and ¸ are chosen
according to the criteria outlined by Honig and Hirdes [19].
The last step is to calculate the integral in equation (44). The method for evaluating this

integral is described in reference [20], and involves the use of Romberg's integration with
adaptive step size. This also uses the results from successive re"nements of the extended
trapezoidal rule followed by extrapolation of the results to the limit when the step size tends
to zero.

5. NUMERICAL DISCUSSION

The analysis is conducted for a magnesium crystal-like material. Following reference
[21], the values of physical constants are

�"9)4�10�� dyn/cm�, �"4)0�10�� dyn/cm�,

K"1)0�10�� dyn/cm�, 	"1)74 g/cm�,

�"0)779�10�� dyn j"0)2�10��� cm�

and the void parameters are

�*"3)688�10�� dyn, �*"1)13849�10�� dyn/cm�,

�*"1)475�10�� dyn/cm�, �*"0)0787�10�� dyn s/cm�,

K*"1)753�10��� cm�.
Figure 1. Variations of normal displacement ;
�
("u

�
/P) with distance x.



Figure 2. Variations of volume fraction "eld Q ("q/P) with distance x.

Figure 3. Variations of normal force stress ¹
��
("t

��
/P) with distance x.
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Figure 4. Variations of tangential couple stress M
��
("m

��
/P) with distance x.

Figure 5. Variations of normal displacement ;
�
("u

�
/P) with distance x.

DISTURBANCE DUE TO MECHANICAL SOURCES 11



Figure 6. Variations of volume fraction "eld Q ("q/P) with distance x.

Figure 7. Variations of normal force stress ¹
��
("t

��
/P) with distance x.
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Figure 8. Variations of tangential couple stress M
��
("m

��
/P) with distance x.
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The computations were carried out for three values of non-dimensional time t"0)5, 1)0, 1)5
at z"1 in the range 0)x)10. The distribution of non-dimensional tangential couple
stress M

��
("m

��
/p), non-dimensional normal displacement ;

�
("u

�
/p), non-dimensional

normal force stress ¹
��

"("t
��
/P) and non-dimensional volume fraction "eld Q ("q/p)

with non-dimensional distance &x' have been shown in Figures 1}8. For all three times, the
solid line, small dashed line and large dashed lines without asterisk symbol predicted the
variations of components for micropolar elastic medium with void (MEV) whereas the lines
with asterisk symbols are for micropolar elastic medium (ME). Six curve predicted by three
di!erent times and two (MEV, ME) theories. Solid lines either with asterisk symbol (}***)
or without asterisk symbol (**) correspond to the case when t"0)5, small dashed lines
either without asterisk symbol (}}}}) or with asterisk symbol (-*-------*) corresponds to the
case when t"1)0, large dashed lines either without asterisk symbol (} } } ) or with asterisk
symbol (-*---*) corresponds to the case when t"1)5.

5.1. CASE I DELTA DISTRIBUTION NORMAL POINT SOURCE

The variation of normal displacement, volume fraction "eld, normal force stress and
tangential couple stress with distance x for MEV andMEwhen instantaneous normal point
source is applied have been shown in Figures 1, 2, 3, 4 respectively.
Figure 1 shows the variations of normal displacement;

�
with distance x. The value of;

�
for all three times greater for MEV than forME in the range of 0)x)1)5 and 6)x)10.
For MEV the value of ;

�
for time 0)5 is smaller than that for times 1)0 and 1)5 in the range

0)x)1)5 and the trend of variation is oscillatory in the whole range.
The variations of volume fraction Q ("q/P) with distance x are shown in Figure 2. The

values of Q is smaller for time 1)0, 1)5 than that for times 0)5 in the range 0)x)1)5 and
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6)x)10. For time 1)0 and 1)5, the value of Q initially increases, whereas it decreases for
time 0)5.
The variations of normal force stress ¹

��
("t

��
/P) with distance x area shown in

Figure 3. The value of ¹
��
for both MEV andME increases sharply in the range 0)x)2

and then starts to oscillate. For times 0)5 and 1)5, the values of ¹
��
are very small and the

behavior is oscillatory for both ME and MEV.
Figure 4 shows the variation of M

��
("m

��
/P) with distance x. For MEV, its value

initially decreases sharply for all three times whereas for ME initially the value increases as
M

��
increases. In the ranges 0)x)1)5 and 3)x)4)5, the values for MEV are greater

than that for ME. The behavior of variation is oscillatory for both ME and MEV but with
opposite signs. For MEV as time increases, the value of M

��
decreases in the ranges

0)x)1)5, 3)x)5 and 6)x)7.

5.2. CASE II CONTINUOUS NORMAL POINT SOURCE

The variation of normal displacement, volume fraction "eld, normal force stress and
tangential couple stress with distance x for MEV and ME when continuous normal point
source is applied have been shown in Figures 5, 6, 7, 8 respectively.
Figure 5 shows the variations of normal displacement;

�
with distance x. The value of;

�
for all three times are greater for MEV than for ME in the ranges 0)x)1)5 and
6)x)10 and smaller in the rest of the range. For both MEV and ME, the value of ;

�
increases as time decreases in the ranges 0)x)1)5 and 6)x)10. For both MEV and
ME and all three times, the value of;

�
decreases sharply in initial range of x. The behavior

of variations is oscillatory in the whole range.
The variations of volume fraction Q ("q/P) with distance x are shown in Figure 6. The

value ofQ is smaller for time 1)0, 1)5 than that for time 0)5 initially. For times 1)0 and 1)5, the
value of Q initially increases whereas it decreases for time 0)5. Its value is small for time 0)5
comparatively in the whole range.
The variations of normal force stress¹

��
("t

��
/P) with distance x are shown in Figure 7.

For the case of ME, the value of ¹
��
increases sharply in range 0)x)2 and then starts

oscillating and the behavior of variation for all three times are similar. For the case ofMEV,
the values of ¹

��
are very small for time 1)5 and their value decreases as time increases

initially.
Figure 8 shows the variation of M

��
("m

��
/P) with distance x. For MEV, its value

initially decreases sharply for times 0)5 and 1)5 whereas it increases for time 1)0. For ME, its
value initially increases sharply for times 0)5 and 1)5 whereas it decreases for time 1)0. For
ME initially, the value asM

��
increases. In the ranges 0)x)2 and 6)x)10, the values

for MEV are greater than that for ME for times 0)5 and 1)5. The behaviors of the variations
are oscillating for both ME and MEV but with opposite signs.

REFERENCES

1. J. W. NUNZIATO and S. C. COWIN 1979 Archive for Rational Mechanics and Analysis 72, 175}201.
A non-linear theory of elastic materials with voids.

2. S. C. COWIN and J. W. NUNZIATO 1983 Journal of Elasticity 13, 125}147. Linear elastic materials
with voids.

3. S. C. COWIN 1984 ¹he Quarterly Journal of Mechanics and Applied Mathematics 37, 441}465. The
stress around a hole in a linear elastic materials with voids.

4. P. PURI and S. C. COWIN 1985 Journal of Elasticity 15, 167}183. Plane waves in linear elastic
materials with voids.



DISTURBANCE DUE TO MECHANICAL SOURCES 15
5. D. A. IESAN 1986 Acta Mechanica 60, 67}89. Theory of thermoelastic materials with voids.
6. D. S. CHANDRASEKHARAIAH and S. C. COWIN 1989 Journal of Elasticity 21, 121}126. Uni"ed
complete solution for the theories of thermoelasticity and poroelasticity.

7. D. S. CHANDRASEKHARAIAH 1989 ¹he Quarterly Journal of Mechanics and Applied Mathematics
42, 41}54. Complete solution in the theory of elastic materials with voids*II.

8. R. S. DHALIWAL and J. WANG 1994 International Journal of Engineering Science 32, 1823}1828.
A domain of in#uence theorem in the linear theory of elastic materials with voids.

9. E. COSSERAT and F. COSSERAT 1909 ¹heories des Corps Deformables. Paris: Aherrman.
10. A. C. ERINGEN and E. S. SUHUBI 1964a, b International Journal of Engineering Science 2 (Parts I

and II) 189}203 and 389}404. Non-linear theory of simple microelastic solids.
11. R. D. MINDLIN 1964 Archive for Rational Mechanics and Analysis 16, 51}78. Microstructure in

linear elasticity.
12. A. C. ERINGEN 1966 Mathematical Mechanics 15, 909. Linear theory of micropolar elasticity.
13. D. A. IESAN 1985 Analele Stiinti,ce ale ;niversitatii 00AI. I. Cuza11 din Iasi 31, 177}186. Shock

waves in micropolar elastic materials with voids.
14. E. SCARPETTA 1990 Acta Mechanica 82, 151}158. On the fundamental solutions in micropolar

elasticity with voids.
15. M. MARIN 1998 Revista CienciasMatematicas (Havana) 16, 101}109. Contributions on uniqueness

in thermoelastodynamics on bodies with voids.
16. M. MARIN 1998 Polytechnic ;niversity of Bucharest. Scienti,c Bulletin Series A. Applied

Mathematical Physics 60, 3}12. A temporally evolutionary equation in elasticity of micropolar
bodies with voids.

17. M. MARIN, SALCA and HORIA 1998 ¹heoretical and Applied Mechanics 24, 99}110. A relation of
Knopo!-de itoop type in thermoelasticity of dipolar bodies with voids.

18. A. C. ERINGEN 1968 ¹heory of Micropolar Elasticity in Fracture, Vol. II. New York: Academic
Press; chapter 7.

19. G. HONIG and U. HIRDES 1984 Journal of Computational and Applied Mathematics 10, 113}132.
A method for the numerical inversion of Laplace transform.

20. W. H. PRESS, S. A. TENKOLSKY,W. T. VELLERLING and B. P. FLANNERY 1986Numerical Recipes.
Cambridge: Cambridge University Press.

21. A. C. ERINGEN 1984 International Journal of Engineering Science 22, 1113}1121. Plane wave in
nonlocal micropolar elasticity.


	1. INTRODUCTION
	2. FORMULATION OF THE PROBLEM
	3. APPLICATION
	4. INVERSION OF TRANSFORM
	5. NUMERICAL DISCUSSION
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

	REFERENCES

